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Abstract-The Volterra-Wiener functional expansion is employed to the analysis of statistic
properties for random heterogeneous solids, For simplicity, the technique is displayed on an
elastic suspension of spheres. The basis function in the expansion is chosen as that corre­
sponding to the so-called "perfect disorder" of spheres (PDS), recently introduced by the
authors, An infinite hierarchy of equations for the kernels in the expansion is derived whose
truncating after the nth equation is shown to yield results for the averaged statistical charac­
teristics which are valid to order c'j, where cf is the volume fraction of the spheres, The kernels
for the first and the second approximations, n = 1,2, are found and related to the displacement
fields in an infinite elastic body containing, respectively, one and two spherical inhomogeneities.
Within the frame of the so-called singular approximation the overall tensor of elastic moduli
for a suspension of perfectly disordered spheres is shown to coincide to the order c} with a
formula, earlier obtained by means of the method of the effective field.

I. INTRODUCTION

In this paper we consider the statistical problem of specifying the random fields­
displacement, strain, etc.-in a heterogeneous linear elastic material whose properties
vary randomly with position. Although the technique employed has much wider range
of applicability for such materials, we shall confine the study, for simplicity, to a random
elastic suspension of spheres. In particular we shall pay a special attention to the overall
(effective) elastic properties of the material.

As known, the problem of predicting the properties of heterogeneous solids on the
base of a certain information concerning their microstructure has enjoyed a consid­
erable interest due, e.g. to its importance in mechanics of composite materials, cf. [1­
3] for detailed and comprehensive surveys of the existing studies from various view­
points. These surveys clearly indicate that a great amount of the work done suffices
with models that lead to certain relations for the overall properties. These models are
not extracted, however, from a rigorous statistical analysis, so that it is never clear,
as a rule, what kind of random constitution, if any, lies behind the proposed relations
for the overall properties. On the other hand, as seen from[1-3], the only rigorous and
fruitful procedures in mechanics of heterogeneous materials are still those described
in detail by M. Beran([4], Chap. 5), i.e. the perturbation and variational ones.

In perturbation method, it is assumed that the constituents have slightly different
material properties. In this case the hierarchy of statistical moment equations can be
truncated in an obvious manner([4], p. 222). In the real heterogeneous materials, the
differences in the constituent properties are, however, considerable so that the per­
turbation method fails, as a rule, to bring reasonable results.

Let us note now that for a two-phase particulate material there is always a pa­
rameter which does not exceed I-this is the volume fraction C f of the discrete (filler)
constituent; in fact Cf rarely exceeds 0.4. That is why a counterpart of the perturbation
method for which the solution is to be obtained in a virial form, i.e. as a power series
with respect to C f, should have much greater range of application for heterogeneous
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materials than the perturbation technique. (Prior now, only the first-order term in the
virial expansion for the overall moduli has been obtained in a number of cases; this
corresponds to a dilute suspension of particles in a matrix. Certain work has been also
devoted to estimating the second-order terms for a suspension of sheres; see, e.g. [5­
7].) As far as the aim of the full statistical solution to the problem, the basic difficulty
to be surmounted when devising such a virial method is the derivation of an infinite
hierarchy of equations-a counterpart of the said hierarchy of moment equations­
whose truncation assures results for the averaged statistical characteristics which hold
to order c'J, for any n prescribed.

In this paper it is shown, making use of the previous works[8-11] of the authors,
that a hierarchy of this kind can be derived by means of the Volterra-Wiener functional
expansion. This is illustrated in the case of a special distribution of equisized spherical
inclusions in an infinite elastic medium, which seems to be of particular interest, namely
the so-called "perfect disorder" of spheres[IO]. The equations which describe the full
statistical solution up to the order c} are derived and related to those for a body con­
taining one or two spherical inhomogeneities. Within the frame of the so-called singular
approximation[l2], the overall tensor of elastic moduli is calculated explicitly.

2. VOLTERRA-WIENER EXPANSION

Consider an infinite medium which consists of an array of spheres, each of radius
a and with tensor of elastic moduli L f , randomly distributed in a matrix with tensor of
elastic moduli Lm • The volume fractions of the matrix and of the spheres are, respec­
tively, Cm and Cf, so that Cm + Cf = 1. Hereafter we supply all the quantities connected
to the matrix with the subscript "m" and those connected to the inclusions (the filler)­
with "I".

Let Xj be the random system of points which are centers of the spheres. As their
radius is constant, in order to obtain an exhaustive description of the random suspension
under consideration, it is necessary to prescribe only the statistical properties of the
random system Xj' Such a description is provided by the multipoint distribution func­
tions In (YI, ... ,Yn), cf. e.g. [13], which give the probability dP to find simultaneously
a point from Xj per each of the infinitesimal volumes Yi < Y < Yi + d3 Yi to be

(2.1)

The functions In are symmetric functions of their arguments; they are to satisfy,
in particular, the conditions

where "( is the mean number of points per unit volume, so that Cf = ~ 1T a3
"{; I D I

volume (D).
We assume the system Xj to be statistically homogeneous, then In(Yl, ... , Yn)

= I~(Y2 - Yl, ... , Yn - YI); the prime will be omitted in what follows. In particular,
II == "{.

It is important to mention that for the Poisson system of points (or the Poisson
pattern, cf. [4], p. 207), the multipoint distribution functions, according to [13], p. 143,
are

n = 1,2, .... (2.2)

With the random system Xj given, we introduce after[13], p. 140, the random field

\jJ(X) = L 5(x - Xj),

.i
(2.3)
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where 8 is the Dirac delta function. The random field of tensor of elastic moduli, L(x),
for the medium under study has a simple representation by means of ljJ(x), namely

where

L(x) = (L) + [L] f hex - y) C~) (y) d3y,

c~) (y) = ljJ(y) - 'Y

(2.4)

(2.5)

is the centered random field eqn (2.3); (L) = cmLm + cfLf , [L] = Lf - Lm and hex)
= 1 for I x I :s; 1, and vanishes otherwise.

The displacement field, u(x), in the random medium is governed by the equations
(in the case of statics and at vanishing body forces)

V'a(x) = 0, a(x) = L(x): e(x), e(x) = !eVu + uV), (2.6)

so that e(x) and a(x) are, respectively, the strain and stress tensors at the point x; the
colon denotes contraction of the tensors with respect to two pairs of indexes. We
prescribe the mean value of the strain tensor, E, to be constant

(e(x» = E (2.7)

which will play the role of a boundary condition for the random eqns (2.6). The brackets
(-) hereafter denote ensemble averaging, cf. [4].

The eqns (2.6) together with (2.7) define a nonlinear operator which transforms
the random field of coefficients, L(x)-the "input," into the random displacement field,
u(x)-the "output." As first noted in [l0-11], a general and powerful method for a
successful attack of stochastic problems for random heterogeneous materials consists
in expanding this operator into a Volterra-Wiener series, generated by the input L(x),
and truncating this series afterward in order to get approximate models or solutions.
However, the usefulness of the Volterra-Wiener series for a given problem depends
to a great extent, as it was acknowledged by Wiener himself, on the possibility of
rendering the series orthogonal in stochastic sense. For an arbitrary random field L(x)
there is no algorithm how to construct such orthogonal series; moreover, it is not clear
whether they exist at all.

If the input is the white Gaussian noise, the orthogonal Volterra-Wiener series
were constructed by Wiener himself[14]; they appeared to be generated by the mul­
tivariate Hermite polynomials so that the corresponding series was called Wiener­
Hermite expansion. This expansion was employed to various physical problems, such
as system identification, turbulence, etc., cf. [15] for a detailed survey. As argued in
[9-10], in problems concerned with heterogeneous materials, especially with those of
a particulate type, the input is a point-random function, and thus it differs essentially
from the continuous in stochastic sense Gaussian white noise. Moreover, if no detailed
information about the distribution of the particles is available (a typical case we are
faced with in reality), we can think their locations statistically independent which im­
mediately brings into view the Poisson random system as the most suitable basis func­
tion.

First to replace the Gaussian white noise by the Poisson random system in Vol­
terra-Wiener expansion was Ogura[16], who constructed the orthogonal Wiener func­
tionals (by means of the Charlier polynominals, as it appeared), and named the re­
spective series Poisson-Wiener expansion. He did so, however, only on a formal basis
and without any applications. Only recently Christov[9, 17] revealed the spectacular
performance of the Poisson-Wiener expansion for nonlinear stochastic systems and
developed the necessary technique with application to the model case of Burgers tur­
bulence and to a stochastic problem for a Poiseuille flow.
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A straightforward application of the Poisson-Wiener expansion to heterogeneous
materials is, however, impossible due to the fact that the inhomogeneities possess finite
size. That is why we introduce, after [10], a Poissonian-like system of random points
for which the points are only correlated in such a manner that their appearance arbitrary
close one to another is forbidden in order to prevent overlapping of the inhomogeneities.
For the suspension of spheres under consideration the latter means, in the language of
the multipoint distribution functions (2.1), that

n

fn(YI, ... , Yn) = "In n Q(Yi - Yi),
i.j~1

i?"!=-j

(2.8)

Q(y) = 1 - R(y), R(Y)={~: IY 1< 2a,
IY I;::: 2a,

(2.9)

n = 2, 3, .... As argued in [10], the functions (2.8) describe a random system of
points which serve as centers of a perfectly disordered system of equisized spheres of
radius a. That is why a random system of points Xj, whose multipoint distribution
functions are given by eqn (2.8), was called by the authors[lO] a perfect disorder of
spheres or, for brevity, a PDS-field.

To clarify a bit more such a terminology, let us note, first of all, that the cumulants
(or semi-invariants) of the random field (2.3) generated by a Poisson system of points
are Dirac's delta functions ([13], p. 141). As the cumulants are measures of statistical
dependence between random variables ([13], p. 18), see also [18], the delta-shape of
the cumulants is a formal expression of the fact that there are no statistical connections
between the location of the points in a Poisson system. In this sense, the Poisson random
system can be also called perfect disorder of points. It should be pointed out here that
the term, "perfect disorder," was first coined by Kroner[19] whose aim was to intro­
duce a certain idealized random medium for which there is no statistical connection
between the material properties at its different points. However, Kroner took the re­
spective moments, instead of cumulants, to be 5-functions, and also he did not account
for the finite size of the inhomogeneities. As a result the original Kroner's notion of
perfect disorder was later critisized, cf. [2], p. 14. Acknowledging this critisism, Kroner
modified his definition, see, e.g. [20]. (Let us note in passing, in authors' view, this
modification lacks the physical clarity of the original Kroner's idea; moreover, it
seems well adapted to polycrystals only, and not to two-phase materials whose par­
ticulate phase possesses distinguishable shape, cf. [21], p. 219.) The above introduced
PDS-field arises, in a sense, from a line of thinking close to that of Kroner of 1967,
[19], when adding two crucial improvements to his definition of perfect disorder: (I)

replacing moments by cumulants to be 5-functions, in order to make the definition
statistically correct, and (2) taking account of the finite size of the inhomogeneities.

The formal theory of the Volterra-Wiener expansion with the PDS-field as a basis
function is built up in detail in [10], and the basic results obtained are the following:
The orthogonal Wiener functionals for this case appear to be generated, similarly to
the Poisson-Wiener expansion, by the multivariate Charlier polynomials C~C') of the
random variable ljJ, cf. (2.3), generated by the PDS-field Xi' Thus, the random displace­
ment field, u(x), which solves the eqns (2.6) and (2.7), can be expanded into the or­
thogonal functional series

U(X) = E·x + JTI(x - y) C~I) (y) d3y

+ JJ Tz(x - YI, X - yz) q;) (YI, yz) d3 YI d3 yz +... (2.10)

with nonrandom kernels T1, Tz, etc. (Hereafter, if the integration domain is not ex­
plicitly indicated, the integrals are taken over the whole [R3.) The kernels Tn, n ;::: 2,
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however, should comply with the condition

Tn(ZI' ... , zn) = 0,
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(2.11)

if there exists at least one pair of indexes i, j, for which I Zi - Zj I < 2a. (This condition
is fully natural and always can be adopted for the suspension of spheres under con­
sideration, since we never have two points of the system Xj situated closer than the
spheres' diameter 2a.) The expansion (2.10), under the condition (2.11) is a virial one,
in the sense that the nth-order term contributes to the average characteristics of the
field u(x) quantities of order c'j.

The first two Charlier polynomials are

C~) (Y) = l\!(y) - "(,

q~) (Yl, yz) = l\!(yd l\!(Yz) - I'l(Yl - yz) l\!(yz) - "(l\J(Yl) + l\!(Yz» + "{Z, (2.12)

cf. [16, 9]. [Note that we already came across the first Charlier polynomial, cf. eqn
(2.5).] The first few moments of these polynomials, which will be needed below, are

(2.13)

+ "(3(3{R(YIZ)R(Y23)}s - R(YIZ)R(Y23)R(Y31»,

(C~)(Yl)C~)(YZ)C~)(Y3'Y4») = "(z(l - R(YIZ))[I'l(YI3) I'l(YZ4)

+ I'l(YI4)I'l(Yz3)] + o("{z),

(C~)(YI' YZ)C~)(Y3' Y4») = "(z(l - R(yn)[I'l(YI3)I'l(YZ4) + I'l(YI4)I'l(YZ3)] + o("{Z),

(C~)(YI' YZ)C~)(Y3' Y4)C~)(Y5» = "(z(l - R(YI2)[I'l(YI5) + I'l(YZ5)][I'l(YI3)I'l(YZ4)

+ I'l( Y14)1'l( YZ3)] + o("{Z).

Here Yij = Yi - Yj and Os denotes symmetrization with respect to the indexes listed
in the brackets, e.g. 3{R(Y12)R(YZ3)}S = R(YI2)R(YZ3) + R(YZ3)R(Y3d + R(Y3dR(yn),
the factor in front of the brackets indicates how many terms enter the full expression.

It should be pointed out that the above formulas (2.13) are particular cases of more
general relations for the third moments of the Charlier polynomials, which were first
derived in [9] and which appeared to be of crucial importance when employing the
Poisson-Wiener expansion to nonlinear stochastic problems, cf. [9, 10] for more details.

Upon substituting eqns (2.4) and (2.10) into the Hooke law, we find now the stress
field in the material to be

O'(X) = L(X):E(X) = (L):E + (L): I defT1(x - y)C~l(y) d3y

+ ... + [L]:E I h(x - y)C~)(y) d3y

+ [L]: II def T1(x - Yl)h(x - yz)C~)(Yl)C~)(yz) d3 Yl d3 Y2

+ ... (2.14)

where def v = HVv + vV). Upon averaging eqn (2.14) and using the mentioned or­
thogonality of the terms of different order in the expansion (2.10), we obtain for the
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(2.17)

(2.16)

overall tensor of the elastic moduli, L*, of the suspension under study

(O"(x» = L* :(e(x» = L*:E

= (L):E + [L]: II def T1(x - Yl)h(x - Y2)(C~I)(Yl)C~)(Y2» d3 Yl d3 Y2' (2.15)

Thus the tensor L* depends on the first kernel T 1 only. Moreover, making use of eqns
(2.13), we can rewrite (2.15) as follows

L*:E = (L):E + "IlL]: Iva defS(x) d3 x,

sex) = T1(x) - "I I R(x - y) T1(y) d3 y.

Therefore, one needs to know only the values of Sex) within the sphere Va = {x; I x I
::s a} in order to calculate the overall elastic properties of the suspension of perfectly
disordered spheres. [These values, however, depend in general on the whole solution
to the stochastic problem (2.6)-(2.7).]

To get equations for specifying the kernels T 1, Tz, etc., we insert the representation
(2.14) of the stress field into the equilibrium equation (2.6), multiply by the functions

ih = (I - R(Z»C~I~)(O, z), ....

as proposed in [9-10], and average the results. This procedure brings forth an infinite
hierarchy of conjugated equations for the kernels in the expansion (2.10); the nth equa­
tion contains three consecutive kernels Tn - 1, Tn, Tn + I. This hierarchy is similar to
that derived in [10] for the problem of heat conduction through the suspension under
consideration. The basic result here is that, due to the virial character of the expansion
(2.10), the hierarchy can be splitted in an obvious manner if the kernels are looked for
as power series

Tn(x) L 'Y k Tnk(X) ,
k~O

n = 1, 2, .... (2.18)

Thus, for an elastic suspension of perfectly disordered spheres, we can solve, at least
in principle, the stochastic problem (2.6)-(2.7) with an order of accuracy "In, i.e. c'j,
for each n prescribed, and the obtained solution will be a full-scale statistical one, in
the sense that we shall know not only the overall tensor L*, but also all the moments
like (e(yd ® e(yz», (e(yd ® 0"(Y2», etc., to the same order c'j.

To illustrate the above said we shall consider in detail the first- and the second­
order approximations. They will correspond to retaining only the first or the first two
terms in the expansion (2.10), and will bring along solutions to the considered stochastic
problem which will hold to order Cf and C}, respectively. For that purpose we shall
need only the first two equations of the said hierarchy truncated to order "12; they are
easily derived by means of eqns (2.13) in the above indicated manner:

V·{(L):('YQI(x) - "12I QI(X - y)R(y) d3y)

+ [L]:E('Yh(x) - "12I hex - y)R(y) d3y)

+ [L]:(QI(X) 'Yh(x) - "12I QI(X - y)h(x - y)R(y) d3y

- 'Y2QI(X) Jhex - y)R(y) d3 y - 'Y2h(X) f Ql(X - y)R(y) d3 y
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+ -y3 II QI(X - YI)h(x - Y2)[R(YI - Y2)R(Y2) + R(YI)R(Y2)

+ R(ydR(YI - Y2) - R(ydR(Y2)R(YI - Y2)] d3YI d3Y2)

+ 2-y2[L]: I Q2(X - Y, x)h(x - y) d3y} + o('l; T2) = 0;

V'{2-y2«L) + (h(x) + h(x - z))[L]):Q2(X - z, x)

+ -y2[L]:(QI(X - z)h(x) + Ql(x)h(x - z))} + o('l) = 0,

1203

(2.19)

(2.20)

where Q;(x) = def Ti(x), i = 1, 2. Due to reasons which will become clear in Section
5, we retained in eqn (2.19) all terms generated by the first kernel T1, while rejecting
the terms of order higher than -y2 introduced by T2.

3. FIRST-ORDER APPROXIMATION

As follows from eqn (2.19), to get a solution to the problem (2.6)-(2.7) which holds
to order"y, i.e. Cj, we have to retain in the virial expansion (2.18) for T1(x) only the
zeroth-order term

The latter is governed by the linear in "Y version of eqn (2.19):

V'{Lm : Q1O(X) + h(x)[L]: (E + Q1O(X))} = 0,

(3.1)

(3.2)

Q1O(X) = def T 1O(X). This is nothing but the equation for the disturbance to the strain
field in the unbounded matrix, introduced by a single spherical inclusion, provided that
the strain tensor at infinity has a constant prescribed value E. As known, the solution
to this problem, QIO(X), is constant within the inclusion[22], so that

Ix 1< a. (3.3)

Thus A(Lm , L f ) is the forth-rank tensor which transforms the homogeneous strain, E,
applied to the matrix at infinity, into the homogeneous strain Ef which makes ap­
pearance into a single spherical inclusion embedded into the matrix.

For the effective tensor of elastic moduli we have now, due to eqns (2.16), (2.17),
and (3.3), the desired first-order relation

(3.4)

If both matrix and inclusions are isotropic, the tensor A is well known[23]; the
overall bulk and shear moduli of the suspension then become, respectively,

k* [k]
- I + km + um[k] Cf + O(cf),km (3.5a)
f.L*

1 +
[f.L]
~ [ ] Cf + o(cf),

f.Lm f.Lm + m f.L

where [k] = k r - km, [f.L] = f.Lf - f.Lm,

1 1 + V m

3 1 - V m

6 km + 2f.Lm 2 4 - 5vm
~ =- -- .

m 5 3km + 4f.Lm - 15 1 - V m '
(3.5b)

V m is the Poisson ratio for the matrix.
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The formula (3.4), especially its particular case (3.5), was arrived at by many
authors on the base of various techniques (cf., e.g. [1], Chap. 2.2). For instance, the
relation (3.4) was proposed in [24] as a simplest "one-particle" approximation, i.e. an
approximation for the overall tensor of elastic moduli which relates the latter to the
solution for a single inclusion embedded into an infinite matrix undergoing homo­
geneous strain at infinity.

The performed analysis enables us to conclude that the formula (3.4) reflects the
overall properties of a dilute perfectly disordered suspension of spheres. It is note­
worthy that the same conclusion can be reached on the basis of the Poisson-Wiener
expansion too, since the function R(Yi - Yj) is not present anywhere in the above
analysis. In other words, eqn (3.4) is the exact overall tensor also for a dilute suspension
of spheres whose centers form just a Poisson system of random points. On the other
hand, if those centers do not form a Poisson system, the relations (3.4) and (3.5) are
not in general valid, as it was shown in [11], when dealing with a suspension of spheres
falling in pairs. This confirms the conclusion[25] that the statistics of the spheres'
locations could affect even the first-order approximation, i.e. that for a dilute suspension
of the overall tensor of elastic moduli L*.

4. SECOND-ORDER APPROXIMATION

To get a solution to the system (2.19) and (2.20) which holds to order "./, i.e.
d, we should retain in the virial expansions (2.18) for T i , T2 the following terms:

(4.1)

Upon substituting eqn (4.1) into eqns (2.19) and (2.20), we obtain in an obvious
manner the following equations for the three functions T \0, T Ii and T20

V'{Lm :Q\O(x) + h(x)[L] :(E + QIO(X»} = 0, (4.2)

V'{2(Lm + (h(x) + hex - Z))[L]:Q20(X - z, x)

+ [L]:(QIO(x - z)h(x) + QIO(x)h(x - z»} = 0, (4.3)

V'{(Lm + h(x)[LJ):(Q,,(x) - f Q,o(x - y)R(y) d3y)

- [L]: JQ,o(x - y)h(x - y)R( y) d3y - [L]: EF(x)

+ (V" - F(x))[L] :QIO(X) + 2[L]: f Q20(X - y, x)h(x - y) d3y} = 0, (4.4)

where

F(x) = f hex - y) R(y) d3y, (4.5)

Qnk(X) = def Tnk(x), Va = hra3; it is acknowledged, when deriving eqn (4.4), that (L)
= L m + -yVa [L].

The eqn (4.2) is the same that already appeared in the first-order approximation,
cr. eqn (3.2), and we assume its solution known. The eqn (4.3) can be rewritten, by
virtue of eqn (4.2), in the form

where

V'{(Lm + (h(x) + hex - z»[LJ):(E + Q(2)(x; z»} = 0,

Q(2)(X; z) = 2Q20(X - z, x) + QIO(X) + QlO(X - z).

(4.6a)

(4.6b)
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The eqn (4.6) is nothing but the equation for the disturbance Q(2)(X; z) to the strain
field in the infinite matrix, introduced by a pair of identical spherical inclusions whose
centers are at the origin and at the point z, when the strain tensor at infinity equals E.
Each of these inclusions, if it were alone, would disturb the strain field in the homo­
geneous matrix by QlO(X) and QlO(X - z), respectively. Thus, the kernel Q20(X - z,
x) is the field which should be added to the "single-inclusion" disturbances QlO(X),
QIO(X - z) in order to obtain the "double-inclusion" disturbance Q(2)(X; z).

The displacement and strain fields in an infinite matrix containing two identical
spherical inclusions have been recently constructed for an arbitrary homogeneous strain
at infinity[26]. That is why we shall assume the kernel T2o(x - z, x) and the strain field
Q20(X - z, x) which it produces known. Then the last eqn (4.4) will describe the strain
field in an infinite matrix containing a single spherical inclusion, which undergoes cer­
tain known body forces. In this way the full statistical solution to the problem (2.6)­
(2.7) for the perfectly disordered suspension of spheres, which is correct to order
d, can be obtained in a straightforward, though rather tedious, manner. We shall
demonstrate this solution in detail elsewhere. However, the analysis simplifies con­
siderably, if the calculation of the overall tensor of elastic moduli L* up to order c} is
our sole goal.

Indeed, due to eqns (2.16), (2.17) and (4.1), we have

where

SI(X) = TII(x) - JTlO(x - y)R(y) d3y.

The field SI (x) is governed by the equation

(4.8)

(4.10)

V·{Lm : defSJ(x) + h(x)[L]:(defS,(x) - VaA:E)} + v·n = 0,

n = [L]:(A:E) (Vah(x) - F(x» + (Va - F(x))[L]:QIO(x) + 2[L]:ho(x), (4.9)

which follows immediately from eqn (4.4), when acknowledging that QlO(X) = (A ­
J):E at I x I :5 a, where A = A(Lm , Lj ) is the above introduced fourth-rank tensor, cf.
eqn (3.3), and J is the unit fourth-rank tensor; also

I 2o(x) = JQ20(X - y, x) h(x - y) d3 y.

As seen from eqn (4.7), only the values of Sl(X) within the sphere Va = {x; I x I
:5 a} are needed. It turns out that those values could be found without solving the full­
scale eqn (4.9), but this would need a bulky analysis that goes beyond the scope of
this paper, whose primary objective is to display the performance of Volterra-Wiener
series for random heterogeneous media. That is why we shall instead construct an
approximate solution to eqn (4.9) within the sphere Va, which seems to be of particular
interest.

With this aim in view, let us first note the following properties of the above in­
troduced functions F(x) and I 2o(x):

= 0 at I x I :5 a;

at Ix I = a,

(4. 11a)

(4. 11b)

with d/dn denoting differentiation along the normal to the sphere I x I = a. [For I2o(x),
these properties follow from the condition (2.11), imposed on the kernel T2.] Keeping
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in mind eqn (4.lla) as well as the fact that QIO(X) is constant atl x) :::; a, see Section
3, we infer now from eqn (4.9) that

at Ix I:::; a. (4.12)

The constant tensor C 1 could be specified by means of the conditions for continuity
of the solution SI (x) to eqn (4.9) and of the normal stress vector generated by SI (x) at
I x I = a, with tensors of elastic moduli being Lf and L m at I x I :::; a and I x I > a,
respectively [the latter is an obvious consequence of the discontinuity of the coefficients
in eqn (4.9) at I x I = a].

The solution to eqn (4.9) can be represented in the form

SI (x) = S; (x) + S'{(x),

where S; and S'{ solve, respectively, the equations

V'{Lm : defS;(x) + h(x)[L]:(defS;(x) - VaA:E)} = 0;

V'{Lm : def S'{(x) + h(x)[L]: def S'i(x)} + V·{l = o.

(4.13)

(4.14)

(4.15)

Obviously eqn (4.14) is the equation for the disturbance to the displacement field
in the unbounded matrix, introduced by a single spherical inclusion, provided that the
strain tensor at infinity equals - VaA:E, cf. eqn (3.2). Consequently, due to eqn (3.3),

def S;(x) = - Va(A - J):(A:E)

The eqn (4.15) implies, in particular, that

V'{L f : def S'I(X)} = 0

V'{Lm : def S'{(x)} + v·n = 0

at I x I:::; a.

at Ix I < a,

at I x I> a.

(4.16)

(4.17)

Due to eqns (4.12) and (4.16), the tensor defS'l(x) is constant at I x I :S a; moreover,
{lex) = 0 at Ix I :::; a, as seen from eqns (4.9) and (4.11). That is why the pair (4.17)
can be replaced by a single equation over the whole [R3, namely

V'{Lm: def S'I(X)} + v·n = o. (4.18)

In turn, a continuous and bounded solution to eqn (4.18) is given by the integral

(4. 19a)

where G(mJ is the displacement Green function for the unbounded matrix material. Thus

defS'i(x) = f r(mJ(x - y):n(y) d3 y.

Here r(mJ is the fourth-rank tensor field with the components

f \l11) = ! (G\I11/· + G\I11)·)
'.lk/ 2 ,k . .I ./k./I •

(4.19b)

One of the approximate methods successfully employed in the theory of hetero­
geneous materials, e.g. by Shermergor et at. (cf. [12], Chap. V, Section 8), is the so­
called "singular approximation." The method is based on the well-known fact that the
second derivative of the Green tensor for an elastic medium of arbitrary symmetry is
a sum of a regular part which is an ordinary function, and of a singular part, proportional
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to the Dirac delta function
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The basic assumption of the singular approximation consists in neglecting the regular
part of the latter derivative.

When employed to eqn (4.19b), this assumption yields def S'{(x) = 0, I x I :s: a,
since n vanishes at I x I :s: a. Thus the tensor C\ coincides with the right-hand side of
eqn (4.16). Inserting this value of C\ into eqn (4.7), we get for the overall tensor of
elastic moduli

L* = Lm + cf[L]:A - cHL]:A:(A - J) + o(c}). (4.20)

Thus it turns out that for the given constitution of the medium the c} contribution
to the overall moduli can be approximately calculated by means of the tensor A =
A(Lm , Lf), i.e. by summoning a solution (3.2) for the single inclusion problem. The
interaction between the inclusions makes then appearance through influencing the far
field of the strain tensor around each inclusion, which now equals - VaA:E, cf. eqn
(4.14). Such a possibility to account for the inclusion interaction in a composite material
was proposed, e.g. by McCoy and Beran[25] in a particular case and later on, for
arbitrary particulate materials, by Markov[24], who named it the method of effective
field. Thus eqn (4.20) suggests that the overall properties for a perfectly disordered
suspension of spheres in the singular approximation should be closely connected to
those predicted by the method of effective field. This suggestion will be corroborated
in the next section.

Consider now the case of isotropic constituents. Making use of the Eshelby re­
sults[23], we recast eqn (4.20) in the form

k*

km
+ km

1+

lk] (1 + a",[k] ) + (2)(' r Cf 0 (' r ,+ amlk] . k", + am[k] .

ll-1] . (1 + 13m ll-1] .) + (.2 )Cr (r OCr,
+ I3mll-1] . I-1m + 13m [1-1] .

(4.21)

am and 13m are given in eqn (3.5b). For rigid inclusions, kf = I-1f = x, and incompressible
matrix, km = x, the shear modulus 1-1* of the suspension under consideration thus
becomes

1-1*
- = 1 + 2.5 Cf + 2.5 d + o(c}).
I-1m

(4.22)

The linear in cf term in eqn (4.22) is easily recognized as that from the famous
Einstein relation. But the coefficient of the d term is 2.5 and thus it differs essentially
from the earlier obtained values (e.g. 155/32 [5], 5.01 [7], etc.). However, no conclusion
can be drawn from such a discrepancy since our analysis of the overall moduli lost its
rigor once the singular approximation was adopted.

In the next section we shall derive a more general formula for the overall tensor
of elastic moduli, whose virial expansion will coincide with eqn (4.20) to the order

d·

5. A HEURISTIC APPROACH

Let us assume that the displacement field in the suspension under consideration
is given by a superposition of equishaped effects of the inclusions, that is,

(5.1)
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i.e. the higher-order terms are a priori neglected in the expansion (2.10). As shown in
Sections 2 and 3, this assumption is consistent only if a linearization in -y is simulta­
neously performed in the eqn (2.19). Such a linearization excludes Tz(x) and decisively
simplifies eqn (2.19), cf. Section 3. The approach we propose here is to neglect Tz(x)
from the very beginning, while retaining terms of order o(-y) in eqn (2.19), generated
by T I(x). The obvious inconsistency of such an approach makes it a heuristic one.
However, it has some spectacular consequences, as it will be seen below.

The eqn (2.19) with the kernel Tz(x) neglected can be recast to the form

V·{Lm : def Sex) + h(x)[L]: (def Sex) + E)

- -yF(x)[L]: E - -y[L]: Jdef sex - y)h(x - y)R(y) d3y

+ -Y(Va - F(x»[L]: def Sex) + -yZ[L] :I(x)} = 0, (5.2)

where

I(x) = JJ hex - YI) defTI(x - yz)R(YI - yz)(l - R(YI» d3 YI d3yz; (5.3)

the functions Sex) and F(x) are given in eqn (2.17) and (4.5), respectively.
A similar equation was considered in [10] for the heat conduction problem by means

of power series expansion in -y. Guided by the above analysis of eqn (4.9), cf. Section
4, we employ here a simpler method, based upon the singular approximation.

The above introduced tensor field I(x) possesses the properties

I(x) = ° at I x I < a;
d

dn I(x) = ° at I x I = a, (5.4)

as it readily follows from the definitions of the functions hex) and R(x), cf. Section 2.
Together with the similar properties (4.11) for F(x), they yield

def Sex) = C at Ix I :s a. (5.5)

The constant tensor C could be then specified by means of the same continuity
conditions as those employed in Section 4.

In virtue of (5.5), the eqn (5.2) can be rewritten as

V·{Lm: defS(x) + h(x)[L]:(defS(x) + ('mE - crC)} + v·n = 0,

n = -y[L] :{(E + Cn V"h(x) - F(x» + (V" - F(x)] def Sex) + -yl(x)}.
(5.6)

Repeating the arguments which we have employed in Section 4 when dealing with
the eqn (4.9), cf. eqns (4.13)-(4.16), we get that within the frame of the singular ap­
proximation the field n will contribute nothing to the said continuity conditions, since
n = °at I x I :s a, and dn/dn = 0 at I x I = a, cf. eqn (4. I I) and (5.4). Thus to
determine C it suffices to consider only the equation

V·{Lm: def Sex) + h(x)[L] :(def Sex) + ('mE - crC)} = O. (5.7)

This is again the equation for the disturbance to the displacement field in the
unbounded matrix, introduced by a single spherical inclusion, provided that the strain
at infinity equals ernE - crC. According to eqns (3.3) and (5.5), we thus obtain the
following tensor equation for C:

C = (A - J):«('I1,E - crC);
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A A(Lm , L f ), whose solution is obvious
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(5.8)

Inserting eqn (5.8) into eqn (2.16) we find that, within the frame of the proposed
heuristic approach, the overall tensor of elastic moduli for the perfectly disordered
suspension of spheres is

(5.9)

The relation (5.9) was proposed by Markov[24] as another "one-particle" ap­
proximation-the "effective field" method. The basic assumption of that method lies
in the supposition that the interaction between particles in a composite material makes
appearance through influencing the averaged strain field around each particle due to
the presence of the rest of the particles. Thus we can conclude that as far as the overall
elastic properties are only concerned, the proposed heuristic approach is equivalent,
within the frame of the singular approximation, to the effective field method.

Let us note now that, written to order C}, the relation (5.9) becomes

L* = L m + cf[L]:A:(J - cr(A - J)) + o(c}), (5.10)

which coincides with eqn (4.20). Thus, the above obtained relation (4.20), found within
the frame of the second-order approximation, is the truncated to the order c} virial
expansion of the effective field relation (5.9) for the overall tensor of elastic moduli.

If both constituents are isotropic, the tensor A, cf. eqn (3.5) when inserted into
(5.9), yields for the overall bulk and shear moduli of the suspension

!.L* = I + [!.L] Cf •

!.Lm !.Lm + I3m[!.L]cm '
(5.Il)

am and 13m are given in (3 .5b). The relations (5.Il) were proposed by Levin[27]; they
are closely connected with the Hashin-Shtrikman[28] and Walpole[29] bounds for the
overall moduli of two-phase isotropic composite materials. Indeed, a simple analysis
shows that the relations (5 .Il) coincide with the lower Hashin-Shtrikman bounds pro­
vided [k][!.L] > O. If [k][!.L] < 0, the relation (5.11) for the bulk modulus coincides with
the upper bound, and that for the shear modulus lies between the said bounds.

In the previous authors' work[IO] the counterpart of eqn (5.9) for the overall ther­
mal conductivity of a perfectly disordered suspension of spheres was derived; it ap­
peared to be the known Maxwell formula-one of the Hashin-Shtrikman bounds for
this case.

6. CONCLUDING REMARKS

In this paper we propose to employ the Volterra-Wiener functional expansion to
statistical problems in elasticity of random heterogeneous materials. The approach
seems to be novel and highly advantageous for this field; it offers unique possibilities
when relating micro and macro properties of the materials. To demonstrate this we
consider a simplified case of a random suspension of equisized spheres whose centers
form the so-called perfect disorder of spheres (PDS). This is a particular configuration
statistics which is of special interest because it seems to represent a case the most
naturally occuring in application. It goes without saying that precise detailed infor­
mation of the microstructure is however required to demonstrate that a given suspension
of spheres can be properly modeled as a perfect disorder.

The sound physical ground of the PDS-field results in a very important feature of
the Volterra-Wiener expansion, generated by this field, namely, it turns out to be virial
with respect to the volume fraction Cr of the spheres. For the kernels of this expansion
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an infinite hierarchy of conjugated equations is derived. [It is to be mentioned that the
hierarchy could be considered as remotely akin to the known Bogoljubov-Born­
Green-Kirkwood-Ivan (BBGKl) hierarchy in statistical physics of rarified gases with
the volume fraction Cr playing the role of the density parameter for the gase.] Due to
the virial character of the said expansion, truncating the hierarchy after the nth-order
term renders results which approximate to the order e'l the averaged statistical char­
acteristics for the random fields of displacement, strain, etc. The first- and the second­
order approximations are considered in detail as an illustration, and the respective
kernels, T I and Tz are found. It appears that while T I can be identified with the dis­
placement field in an infinite body containing a single inclusion, the kernel Tz is closely
connected, but not identical, to the displacement field in the body, containing two
inclusions.

When dealing with overall elastic moduli, the outstanding position of the perfect
disorder manifests itself again: For one thing, it appears that the determination of these
moduli, at least to the order d, by means of the above-mentioned singular approxi­
mation of Shermergor et al., cf. Section 4, can be easily performed without solving
the full-scale equations for the second-order approximation. For another thing, the
interaction between inclusions, within the frame of the same singular approximation,
shows up through changing the strain far field around each inclusion: this is the earlier
proposed idea of effective field.

Finally, it is important to note that unlike the known approach, initiated by Batch­
elor and Green[30] et al., no difficulties, connected with convergence, normalization
and so on, arise in our approach. This could be attached to the most appropriate group­
ing of statistical information in the expansion (2. to). Thus, the Volterra-Wiener ap­
proach accomplishes the suggestion of Chen and Acrivos that, "there may exist a
method for calculating the effective bulk modulus which does not require a normali­
zation to lead to an absolutely convergent integral and which gives, apparently, a dif­
ferent result" (l7L p. 349).
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